Arm-Aware Guided Dexterous Grasp Generation
with Arm-Agnostic Grasp Models

Abstract—Dexterous grasp generation that considers arm-
related constraints is crucial in real-world scenarios involving arm-
environment collision avoidance, workspace boundary grasps, and
consecutive grasping. Existing hand-centric grasp models, which
primarily focus on the floating hand’s pose, are insufficient for such
cases. Conventional arm-aware methods either rely on rejection
sampling to discard infeasible samples or require retraining on
arm-specific data, leading to low sample efficiency under adverse
conditions or limited generalization across different robots and
environments. To overcome these limitations, this letter presents an
arm-aware dexterous grasp generation framework that leverages
pretrained arm-agnostic grasp models while integrating arm and
environmental information only at inference time. Specifically,
we formulate arm-aware constrained grasp generation as a joint
optimization of hand pose and arm configuration, and derive
closed-form gradients for arm-related constraints. Assuming the
hand pose distribution is represented by a diffusion model, we
prove that gradient-based optimization is equivalent to guided
diffusion sampling, steering near-feasible samples toward the
feasible region. Through comprehensive evaluation involving 10k
objects across 6 scenarios, we demonstrate that the proposed
framework generates feasible grasps in highly constrained settings
with significantly higher probability, highlighting its advantages
in real-world applications. Supplementary materials are available
at https://arm-aware-dexgrasp.github.io/.

Index Terms—Dexterous grasp generation, arm-aware manipu-
lation, guided diffusion optimization.

I. INTRODUCTION

EXTEROUS grasp generation, which generates grasp

poses for dexterous hands based on object and environ-
ment information, provides a target grasp configuration for
grasp execution [1], [2], and serves as a precondition for the
subsequent robotic manipulation [3].

Existing grasp generation methods predominantly employ a
hand-centric scheme, which focuses primarily on learning the
distribution of a free-floating hand’s grasp poses, overlooking
the robotic arm and critical environmental context, such as
obstacles [2], [4], [5], [6]. However, focusing solely on the
hand is often insufficient in practice. For example, when
grasping in a constrained space, the arm must avoid collisions
with surrounding objects to ensure safety. Moreover, grasping
objects near the boundary of the arm’s reachable space
constrains the wrist orientation to ensure the existence of
inverse kinematics (IK) solutions. Additionally, minimizing
arm motion is important for execution efficiency, particularly
in tasks involving consecutive grasping and confined pick-
and-place. Therefore, it is essential to incorporate arm-related
constraints into the grasp generation process.

To address this issue, a straightforward solution is rejection
sampling, where multiple candidate grasps are generated and
those violating arm-related constraints are filtered out before
execution. Although this strategy is widely used in practice, it
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Fig. 1: Motivation of arm-aware dexterous grasp generation. Real-world
grasp execution requires considering arm-related constraints, yet conventional
methods rely on rejection sampling to discard even near-feasible hand poses,
leading to low efficiency. Our approach guides pretrained arm-agnostic models
with these constraints at inference, greatly improving sampling efficiency.

significantly reduces sampling efficiency—especially in highly
constrained environments where the feasible region occupies
a small volume relative to the full solution space, as many
near-feasible samples are discarded without correction. An
alternative is to directly train a model on synthetic data that
involves both the hand and arm, which already satisfies the
constraints [|]. However, this approach suffers from limited
generalizability, as the grasp model tends to overfit to a specific
arm and environment setup. Adapting to a different robotic
arm or environment necessitates additional data synthesis and
retraining the model, which is time-consuming.

In contrast, this letter proposes an arm-aware dexterous
grasp generation method (shown in Fig. 1) by reformulating
the problem as a joint optimization of grasp pose and arm
configuration, utilizing only pre-trained arm-agnostic (i.e., hand-
centric) grasp generation models. Our approach enhances
sampling efficiency by transforming near-feasible samples
into feasible ones through inference-phase guidance with arm-
related constraints. Additionally, we express all arm-related
constraints using closed-form equations and gradients, enabling
our approach to be applicable to any robotic arms and environ-
ments, based on pre-modeled analytical arm kinematics and
environment SDFs, without the need for costly data synthesis
and re-training. Assuming the arm-agnostic grasp distribution
is expressed as a diffusion model, we demonstrate that solving
the proposed optimization problem using a primal-dual (PD)
method corresponds to guided grasp-pose denoising within
the diffusion framework. While incorporating guidance in
the diffusion framework is common, designing guidance that
maps between joint-space (arm configuration) constraints and
Cartesian-space (hand pose) denoising is challenging.

Contributions of the letter can be summarized as follows:
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1) We formulate arm-aware grasp generation as a joint opti-
mization of grasp pose and arm configuration, deriving its
relation to guided sampling on the pre-trained arm-agnostic
grasp diffusion model with added arm constraints.

2) We derive analytical forms and gradients for three commonly
used arm-related constraints (i.e., collision avoidance, hand
reachability, and joint proximity) to create the gradient
for guidance, addressing the complex mapping between
joint-space constraints and Cartesian-space denoising.

3) We design comprehensive benchmark scenarios for simu-
lation and real-world evaluation, featuring high obstacle
coverage and grasps near arm limits, which thoroughly
verifies that our method generates successful grasps that
satisfy constraints with a significantly higher probability
than the commonly used rejection sampling strategy. The
proposed approach is applicable to various robotic arms
(e.g., URS5 and Franka) and environments, utilizing a single
hand-centric grasp generation model.

II. RELATED WORKS
A. Dexterous Grasp Generation

Dexterous grasp generation aims to predict feasible grasp
poses for robotic hands from object meshes or point clouds,
typically leveraging large-scale datasets. Early methods relied
on supervised learning to directly regress grasp poses and
evaluate grasp quality [7], [8], or to construct object-centric
contact representations that are later converted into grasp
configurations through optimization or regression [9]. To better
capture the multimodal nature of feasible grasp distributions,
generative models have been adopted, improving grasp diversity
and generalization [2]. For instance, Li et al. [10] proposed a
conditional variational autoencoder (CVAE) that jointly models
hand rotation, translation, and joint articulation. More recently,
diffusion models and normalizing flows have shown strong
scene-conditioned distribution modeling capabilities and are
rapidly becoming prevalent for grasp generation. Some recent
approaches directly leverage diffusion and flow-based models
to jointly generate grasp poses and their associated hand joint
configurations, improving the diversity and expressiveness of
grasp distributions [5], [11], [12]. Meanwhile, other methods
learn contact geometry and force distributions through diffusion,
allowing the resulting grasp representations to generalize across
different dexterous hand configurations [13], [14]. However,
despite these advances in cross-hand generalization, few
methods explicitly account for arm kinematics or environmental
obstacles during generation. This hand-centric assumption
ultimately restricts execution success, particularly in spatially
or kinematically constrained settings. While some recent
works attempt to incorporate the robotic arm during data
synthesis to produce arm-hand joint datasets [!], they are
typically limited to a specific arm and simple tabletop scenes,
hindering generalization to different arm embodiments or
diverse environments.

B. Guided Diffusion Generation in Robotics

An advantage of diffusion models is their ability to integrate
guidance during sampling, allowing the generated trajectories

to satisfy task-specific constraints. Classifier guidance [15] and
classifier-free guidance (CFG) [16] steer the sampling process
toward a desired category using log-probability gradients, while
energy-based guidance injects the gradients of differentiable
cost functions directly into the denoising steps. In robotics,
guided diffusion has been successfully used in motion planning
by incorporating collision penalties, kinematic constraints,
and joint limits into sampling, yielding feasible trajectories
in joint space [17], [18], [19], [20]. Diffusion guidance has
also been applied to grasp generation. Weng et al. employed
a learning-based evaluator to provide score-based guidance
during diffusion sampling [2 1], whereas Zhong et al. introduced
a physics-guided sampler that leverages explicit gradients of
differentiable physical grasp metrics to guide the sampling
process [22]. Other works leverage language instructions
as guidance to identify the target object or part, enabling
semantically meaningful and functionally relevant grasping
[23], [24]. However, most of these methods primarily focus
only on the local optimization of hand configurations to improve
grasp quality, while overlooking the kinematic feasibility and
environmental constraints imposed by the robotic arm bodies,
especially the need for global optimization over the whole-arm
configurations in highly constrained spaces.

III. METHODS

In this section, we detail the problem formulation and
solution for arm-aware dexterous grasp generation, followed by
the derivation of analytic forms and gradients for arm-related
constraints. See Fig. 2 for an overview of the proposed method.

A. Preliminaries

Classical dexterous grasp generation aims to learn a distribu-
tion p(G|O) over a synthesized grasp dataset, given the partially
observed object information O (i.e., a single-view point-cloud)
[22]. A dexterous grasp G = (¢"*, ) contains the hand joint
angles g"" € R™ and the wrist pose & € SE(3). As observed
in [1], the wrist pose distribution p(x|Q) typically exhibits a
multi-modal pattern, which can be effectively captured by
diffusion probabilistic models [25]. Once a wrist pose x
is sampled, the joint angles g"" can be deterministically
predicted by a regression network. We therefore adopt a
diffusion model to generate wrist poses. During training, a clean
pose x( is randomly drawn from the dataset and perturbed
with Gaussian noise €; as

Ty = Vayxo + V1 — €. (D

Here, &y = [['_, (1 — B,) denotes the cumulative noise decay
factor, and S5 € (0, 1) determines the variance of the Gaussian
noise added in diffusion step s. The optimization objective is
derived to minimize the difference between the added noise
and predicted noise

@)

After training, the learned noise predictor €y is used during
inference to perform iterative denoising. Specifically, we follow

Ly := MSELoss(€;, €g(x¢, O, t)).
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Fig. 2: Overview of the proposed arm-aware dexterous grasp generation method. Initially, we pretrain an arm-agnostic diffusion model to capture the distribution
of wrist poses for floating hands. During sampling, arm kinematics and environment SDF are integrated as constraints, with their gradients guiding the denoising
process. This approach significantly enhances the proportion of feasible grasps, adaptable to various arm-hand configurations and constrained environments.

the DDIM sampling framework [26] to predict the clean wrist
pose &g and update the sample zPPM deterministically

) 1 _
g = \/GTt (a:t — MEQ(mta O7t)) ) (3)
aPPM — a a0+ /1 — a1 eo(x, O,1).  (4)

The estimated @ is then used to enforce arm-related constraints,
which will be detailed in Sec. III-B. From the perspective of
Langevin dynamics, the DDIM update can be seen as moving
the sample along the log-probability gradient [27]

DDIM
Ly

(&)

i.e., toward regions of higher likelihood under the learned
wrist pose distribution. After denoising, the corresponding
joint angles g"™¢ are then predicted by an MLP.

~xy+ %vm IOgPO(th))v

B. Problem Formulation of the Arm-Aware Grasp Generation

The learned hand-centric diffusion model pg(z | O) for
wrist-pose generation does not ensure that a sampled pose
x ~ py satisfies the constraints of the robotic arm. To address
this limitation, we extend the diffusion sampling process to
incorporate arm awareness. Under arm-related constraints,
some samples « lie within the feasible set, while others do not.
The key idea is that, through gradient-based guidance, nearly-
feasible samples are gradually pulled toward the feasible region,
resulting in a higher proportion of feasible samples and thus
forming a modified distribution. Hence, our goal is to directly
sample wrist poses from this modified distribution m, subject to
two requirements: 1) The modified distribution 7 should remain
close to the arm-agnostic distribution pg(x | O) to maintain
grasp quality; 2) Each wrist pose & must be reachable by the
robotic arm while satisfying arm-related constraints.

We formulate this as a bi-level optimization problem that
separately optimizes the diffusion sampling distribution 7
and the arm configuration g. The outer optimization aims
to update the diffusion sampling distribution 7 by minimizing
the Kullback-Leibler (KL) divergence to the pretrained model

py, together with the expected arm-aware loss g(a) computed
at each wrist pose  ~ . Formally, the outer problem is
defined as a variational optimization over 7

mﬂin KL(7[|pg) + AgEznr[g(2)], ©)

where the value function g(x) represents the minimum loss
achievable by the robotic arm under feasibility constraints
and )\, is a positive weight coefficient. For each sampled
wrist pose x, we first consider the following inner constrained
optimization over the joint configuration g

g(x) = min fi(z,q) st fe(z,q) <0, @)
q€Q(x)

where

Q(z) = {q | FK(q) = =} ®)

denotes the feasible configuration set defined by forward
kinematics FK(-). The terms f.(-) and f.(-) represent the
soft and hard arm-related cost, respectively. For this inner
optimization problem, we introduce the Lagrangian function
to handle the inequality constraint

,C(.’B,q; >\c) = fs(w,q) +>\cfc(90,Q), 9)

where A\, > 0 is the Lagrange multiplier associated with the
inequality constraint. The optimal arm configuration is then
obtained by minimizing this Lagrangian within the feasible set

* = arg min T
q gqeg(m)f( :q),

where f(x,q) = fs(x,q) + \efe(z, q).

Following the primal-dual method [28], the dual variable for
the inequality constraint is updated via gradient ascent on the
Lagrangian in (9)

)\c,t—l = /\c,t + nAfc(ma q*)7 (11

where 7, > 0 is the learning rate. This update gradually
increases the penalty on infeasible wrist poses as denois-
ing proceeds, thereby enforcing the hard constraint more
strictly. This inner optimization thus defines the value function
g(x) = f(x,q"*), which then guides the outer update of the

(10)



diffusion distribution over wrist poses. Following [29], solving
the variational optimization in (6) yields a pointwise closed-
form solution

7 (x) o< po(x|0) exp[ — Agg()], (12)

which corresponds to an exponentially tilted version of the pre-
trained distribution. By descending the negative log-probability
of this modified distribution in (12) with the substitution of
DDIM update (5), we obtain the following denoising update

= 2o 2 [ (13)

Ti—1 = Ty_q B
where PPM is obtained from (4). This update resembles
guided sampling, integrating both the original denoising process
and guidance from arm-related feasibility constraints. Com-
pared to [29], we compute gradients using the predicted wrist
pose &, instead of the noised sample x;, ensuring smoother
and more consistent gradient updates .

C. Analytical Formulation of Arm-Related Constraints

Building on the hierarchical formulation in Sec. III-B, we
now describe how the arm-related constraints are incorporated
into each denoising step (13). The feasible set Q(x) is obtained
via IK mapping from wrist poses to arm configurations. To
handle multiple IK branches efficiently, we use the geometry-
based analytical solver [30]. After obtaining the optimal joint
configuration g* over the feasible set according to (10), the
gradient of the value function can then be computed as

Vyg(x) = Vaf (z,q7).
We further evaluate this gradient by applying the chain rule

C9f . (dg*\"oF,
&B(%qH(dw) afq(fv,q)-

To compute the second term, observe that the IK solution g*
can be viewed as the local minimizer of the following quadratic
program, with g™ denoting a reference configuration

(14)

Vy(x) 15)

2

* = 'EFK a2y 2 16
q —argmqm2|| (q) wl\z+2llq Gret|[3- (16)

Here, )\, serves as a damping coefficient that stabilizes the
solution. Through sensitivity analysis of (16), the gradient of
q* can be derived as the damped pseudo-inverse, which is
independent of the reference configuration g"

dq*

dx
where J denotes the geometric Jacobian of the arm. Substitut-
ing this result back into (15), the closed-form gradient with
respect to the wrist pose is obtained as

0 0
Vola) = o (@a) + (L) 5

This indicates that the arm-related gradient comprises a direct
term with respect to the wrist pose = and an indirect term

=J{ =TT+, (17)

(x,q7). (18)

ICompared to Vg(x), Vg(&o) changes more gently, especially when
considering the collision avoidance constraints.

propagated through the joint configuration g via the damped
Jacobian pseudo-inverse.

Based on this gradient formulation, we now present the
specific forms of the three arm-related constraints.

Hand Reachability: This constraint ensures that the wrist
pose remains within the reachable workspace of the arm by
penalizing the forward kinematics error

1
freacn(@, @) = 5|IFK(q) — z|?. (19)

The partial derivatives of the reachability loss are written as

0 f reach 8f reach
ox 0q

Arm-Environment Collision Avoidance: This constraint
prevents potential collisions between the robotic arm and the
environment. It is determined by the minimum value d(q) of
the points on the arm’s sphere-based collision model within
the environment’s signed distance field (SDF). We apply a
sigmoid shaping function that smoothly increases the cost as
the robot approaches obstacles

=z — FK(q), = JT(FK(g) —=). (20)

feoni(q) = 0( - d(Q)) - %7

where o(2) = He%m denotes a sigmoid function with slope

parameter x. The gradient of the collision cost is expressed as

8fcolli o
oq

where J, € R3*" denotes the translational Jacobian of the
point on the robotic arm with the minimum SDF, and n is the
unit vector which aligns with the SDF gradient at that point.

Joint Proximity: To reduce unnecessary joint-space move-
ment, we introduce a penalty on the deviation of the solved
arm configuration g from the current configuration qcy,

2n

(22)

1
fjoint(q) = §||q - cher, (23)
whose gradient is given by
0 join
‘Q © =4~ o (24)
q

The Hand Reachability and Collision Avoidance terms
are treated as hard feasibility constraints, whereas the Joint
Proximity term is considered a soft constraint in (6). Therefore,
we have

F(®,q) = X freaen(, @) + X" feoni(@) + fioim(q).  (25)

According to Sec. I1I-B, the coefficient \©ah \<°lli of the hard
constraints are dynamically updated following (11). One can
adjust the relative weights or disable certain constraint terms
in (25) by assigning different schedules for A. Among these,
the Collision Avoidance term is the most commonly used,
as real-world grasping scenarios often occur in constrained
environments. The Hand Reachability term addresses extreme
situations involving grasping near workspace boundaries, while
the Joint Proximity term plays a significant role during
consecutive grasping. Finally, the gradient Vg(x) required
by (13) can be computed with (18), (20), (22) and (24). The
overall grasp generation procedure is summarized in Alg. 1.



Algorithm 1: Arm-Aware Dexterous Grasp Generation

Input: noise predictor €y of the pre-trained diffusion
grasp generation model, environment SDF,
object partial observation O, initial value and
learning rate of \., current configuration gy,

for ¢ from 7T to 1 do

Compute PP using the denoising step (4)

Compute the IK solution set Q (8) and the cost

function f(«, q) according to (25)

Compute g* according to (10)

Update A\, with (11)

Compute Vg(x) with (18), (20), (22), and (24)

Update the noised sample x;_; with (13)

end
return xg,q*

IV. EXPERIMENTS

We design the experiments to answer the following questions:
1) Can the proposed method generate feasible grasps that satisfy
arm-related constraints with a higher probability? 2) How does
incorporating these constraints affect physical grasp quality?
3) Is the proposed method easily adaptable to different robotic
arms and environments without additional data synthesis or
training? Additional evaluation results can be found in the
Appendix (available on our Project Website).

Experiment Setup. We use the Shadow Hand in simulations
and the LEAP Hand for real-world evaluations, considering
two common robotic arms, URS5 and Franka. We assume
the environment can be represented as a combination of
closed geometries, enabling a well-defined SDF. We adopt the
sphere robot collision models from cuRobo [31] for collision
avoidance. We train the hand-centric diffusion model pg on
roughly 50k tabletop grasps synthesized with BODex [1] on
the processed DGN dataset [12]. The simulation evaluation
is performed using DGN’s test set, containing 10,892 objects
with varying geometries, poses and scales. For each object,
10 random grasp poses and arm configurations are sampled,
yielding a total of approximately 100k grasps.

Evaluation Metrics. We are concerned about four types of
metrics: 1) Constraint Satisfaction. For the hard constraints,
we filter out grasps that violate these constraints and report the
percentage of arm-feasible grasps among all sampled grasps that
satisfy the Collision Avoidance constraint (Collision Feasible
Rate, CFR), the Hand Reachability constraint (Reachability
Feasible Rate, RFR), and both (Feasible Rate, FR). For the

Yy &

(a) Narrow Corridor (S1) (b) Room Corner (S2)

Table I: Performance of grasp generation in constrained environments (URS)

C. Satisfaction(%)1

GSR SR OSR
S Method

cene VRO "FR - RFR . FR | DT DT (@)1
s1 Baseline 14.75 99.52 14.75 50.10 7.39 49.92
Ours 8491 100.00 8491 44.69 37.95 89.64

S Baseline  33.69 95.60 33.69 52.75 17.77 77.39
Ours 98.56 100.00 98.56 40.34 39.76 91.25

$3 Baseline  28.64 72.82 28.64 52.44 15.02 73.04
Ours 83.18 98.82 83.18 41.72 34.70 91.22

Table II: Performance of grasp generation in constrained environments (Franka)

C. Satisfaction(%)1T

GSR SR OSR
S Method

cene  VEOC "ER  RFR  FR @ (@ (@1
S1 Baseline 11.60 78.34 11.40 49.33 5.62 40.98
Ours 62.55 87.79 60.15 38.97 23.44 81.49

S Baseline 33.03 78.33 3191 52.90 16.88 76.34
Ours 96.58 94.86 93.92 40.96 38.46 91.32

s3 Baseline 2942 5850 2941 53.60 15.76 74.05
Ours 80.50 87.88 80.45 48.16 38.75 91.34

sS4 Baseline 23.56 85.31 23.54 52.59 12.38 65.78
Ours 68.55 96.50 68.48 4191 28.70 85.96

soft constraint, we report the average Joint Proximity loss of
all sampled grasps (Average Joint Proximity, AJP). 2) Grasp
Success Rate (GSR). Among all feasible grasps that satisfy
the hard constraints after filtering, we report the percentage of
grasps that are successfully executed in MuJoCo. This metric
indicates the quality of the arm-feasible grasps. 3) Success
Rate (SR). This metric, akin to GSR, measures the percentage
of feasible and successful grasps from all sampled grasps and
is equal to the product of FR and GSR. 4) Object Success
Rate (OSR). We report the percentage of the 10,892 objects
that, among all sampled grasps, have at least one that is both
feasible and successfully executed in MuJoCo.

Baselines. In the experiments, the baseline refers to rejection
sampling from the pretrained grasp distribution pg. We select
the arm configuration as the IK solution with the least constraint
loss, defined as (10). Additionally, the *w/o0’ variants represent
ablations that omit the guidance of the associated constraint
from our method.

A. Simulation Studies

It is worth noting that Collision Avoidance is essential
for constrained grasping, while Hand Reachability and Joint
Proximity play critical roles for their respective purposes. We
first evaluate Collision Avoidance in Sec. IV-Al, followed by
an assessment of the other two constraints and their interaction
with Collision Avoidance in Secs. IV-A2 and IV-A3.

Y )

(c) Shelf Top (S3) (d) Partition Board (S4)

Fig. 3: Visualization of four evaluation scenes (S1-S4) with one successful grasp involving the robotic arm and dexterous hand, the obstacles painted in green,
and the grasped object highlighted in orange. Scene S4 is specifically designed to showcase Franka’s collision avoidance using its kinematic redundancy.
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Fig. 4: Illustration of representative cases highlighting the effects of various constraints. The top row illustrates the arm configurations g* during the denoising
process of a certain noised sample both with our method and the baseline, where g* at t = T',T'/2, 0 are visualized from transparent to opaque. The denoising
process starts from the same initial arm configuration shown with the highest transparency. The fully denoised hand and arm configuration are depicted with
the lowest transparency. For clarity of illustration, we only display the evolution of hand configuration in (b). The green arm in (c) represents the reference
joint configuration gcur based on a hypothetical previous grasp attempt. The bottom row presents the evolution of normalized constraint losses over time.

1) Performance of the Collision Avoidance Constraint:
To evaluate the performance of guided grasp generation in
constrained environments, we design four challenging scenes,
as shown in Fig. 3. The feasible regions in these scenarios
are relatively small, which significantly impacts the efficiency
of rejection sampling. The results are shown in Tab. I and
Tab. II. On the one hand, the proposed method significantly
enhances constraint satisfaction, particularly with regard to the
CFR and FR. On the other hand, the incorporation of guidance
slightly degrades quality of the feasible grasps, as indicated
by GSR, by altering the direction in the original denoising
process. It is worth noting that, while grasp quality may be
affected, the proposed method significantly improves SR and
the probability of achieving at least one successful grasp for a
given object—measured by the Object Success Rate (OSR)—by
increasing the proportion of feasible grasps. In the Appendix,
we explore a preliminary solution for maintaining grasp
quality through null-space projection, which merits further
investigation. Additionally, the proposed method demonstrates
consistent performance on both UR5 (Tab. I) and Franka
(Tab. II), demonstrating its adaptability to robotic arms with
different kinematics. For Franka, both the proposed method
and the baseline show more noticeable constraint violations
on S1 (Tab. 1), likely due to Franka’s larger collision volume
and limited workspace, which reduce the feasible region.

2) Performance of the Hand Reachability Constraint: To
evaluate our method’s ability to generate grasps with higher

Table III: Performance of reachable grasp generation near workspace boundaries

reachability, we randomly place objects near the edge of
the robotic arm’s workspace, as illustrated in the tabletop
scene in Fig. 4 (b). Under these placements, the arm can
only perform grasps aligned with the object’s front-facing
direction and cannot reach grasp poses from behind, while
still needing to avoid collisions with the tabletop. As shown in
Tab. III, applying only the Collision Avoidance constraint (w/o
Reachability) or only the Hand Reachability constraint (w/o
Collision) results in optimal performance for their respective
metrics (CFR and RFR). However, this comes at the expense
of the other metric, indicating that a solution addressing both
constraints more effectively remains to be found. In contrast,
our method incorporates both constraints during inference,
guiding sampling toward feasible regions that satisfy both
constraints. This leads to a substantial increase in FR and
further improves OSR.

3) Performance of the Joint Proximity Constraint: To
evaluate our method’s ability to generate grasps with arm
configuration proximity, we randomly place objects on a shelf
and define a reference joint configuration based on a hypothet-
ical previous grasp attempt, as visualized in Fig. 4 (c). The
results in Tab. IV indicate that our method achieves the lowest
joint proximity loss (AJP) and delivers the best performance
in both CFR and FR. We observe that applying only the Joint
Proximity constraint (w/o Collision) also improves collision
avoidance performance (CFR), as the reference configuration
is collision-free and implicitly guides sampling toward safer

Table IV: Performance of grasp generation with reference joint configuration

C. Satisfaction

Arm Method C. Satisfaction(%)1 GSR SR OSR Arm Method IR R NS (;SR ;R %SR
CFR RFR FR (%)t (%) (%) (%)t (%)t (rad2)) (7)1 (%)t (7)1

Baseline 8396 2720 1947 4733 922 4994 Baseline 43.95 41.80 0.093 4590 19.19 7251

URS Ours 83.87 69.64 5620 43.68 24.54 79.44 UR5 Ours 7414 7371 0.045 36.04 26.57 8043
w/o Reachability  91.30 2636 2249 4816 10.83 53.73 w/o Collision  53.67 53.07 0.054 4240 2250 77.33

w/o Collision 71.13 7233 4642 41.85 1943 7454 w/o Joint 65.61 63.81 0.075 42.66 2722 8143

Baseline 78.42 23.60 1342 48.03 645 35.81 Baseline 45.04  43.98 0.099 46.64 2052 5899

Franka Ours 80.66 5839 47.62 4447 2118 7147 Franka Ours 52.67 52.01 0.081 4476 2327  66.37
w/o Reachability 91.48 18.81 1595 47.11 7.51 40.93 w/o Collision  49.85 48.84 0.092 46.67 22779 63.78

w/o Collision 61.57 7045 40.84 4452 18.18 60.43 w/o Joint 4726  46.59 0.087 4340 2022  60.79




Banana Blue Box Cheezit

Mustard

(b) Shelf Scene

Fig. 5: Snapshots of the real-world grasp execution with URS and LEAP Hand, under two challenging scenarios. (a) Corridor Scene, (b) Shelf Scene.

Table V: Per-object grasp execution success rate with the grasps generated for eight daily objects in two real-world constrained scenarios (Fig. 5)

Corridor Scene Object Banana  Blue Box Cheezit Mustard Toy  Apple Tea Can  White Tape
Top-10 Success Num 8/10 6/10 8/10 8/10 9/10  10/10 7/10 10/10

Shelf Scene Object Banana  Blue Box Cheezit Mustard Toy  Apple Tea Can  White Tape
Top-10 Success Num 10/10 9/10 8/10 9/10 9/10  10/10 9/10 10/10

regions. We further demonstrate potential applications of this
constraint through real-world experiments.

4) Illustration of Representative Cases: For better under-
standing, we visualize representative cases that illustrate the
effect of incorporating various constraints, as depicted in Fig. 4.
The denoising process for both our method and the baseline
begins with the same Gaussian noise sample. In Fig. 4 (a),
the collision is progressively resolved with guidance, whereas
the baseline leads to significant penetration. In Fig. 4 (b), the
wrist pose is incrementally projected into the arm’s reachable
space, whereas the baseline wrist pose remains out of reach. In
Fig. 4 (c), the fully denoised arm with guidance is closer to the
green reference configuration, indicating a shorter joint-space
movement from the last grasp attempt. Among all these cases,
the constraint losses converge to zero using our method, while
the baseline results in large violations.

B. Real-World Experiments

In the real-world experiments, we use the LEAP Hand
mounted on a URS robotic arm. An Azure Kinect depth camera
captures the object’s partial point cloud. We employ cuRobo
to plan collision-free hand-arm trajectories from the initial
configuration to the pre-grasp configuration, where the fingers
are slightly spread apart without contacting the object. In
addition, we train a grasp quality evaluator that predicts the
probability of successfully executing a given grasp based on
the object’s partial point cloud and the grasp pose, enabling the
selection of higher-quality grasps from a batch of candidates
for real-world execution. This module addresses the issue of
imperfect grasp generation (i.e., low GSR) in practice.

1) Evaluation of Grasp Quality in the Real-World: We first
evaluated the quality of the generated grasps in the real world,
which is necessary as simulations cannot accurately capture
the contact-rich interactions present in the physical world.
The evaluation involved grasping eight everyday objects with
varying geometries and masses, positioned in two challenging
scenarios: (a) Corridor Scene and (b) Shelf Scene. For each

visualization of grasp plan nearest arm configuration

planned grasp
(unreachable)

object's
| observation

real world execution result _
\

reached grasp

Ours Baseline

Fig. 6: Comparison of grasp generation near the arm’s workspace boundary.
The top right figure shows a planned grasp that the robotic arm cannot reach.
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Fig. 7: Illustration of guided grasp generation for continuously regrasping
with the Joint Proximity constraint. The reference initial grasp and the four
final grasps are displayed from left to right, with additional grasps omitted for
brevity. Please refer to the attached video for the complete grasp sequence.

object, we sampled 40 candidate grasps in a batch and
executed the top 10 arm-feasible grasps with the highest
predicted success probabilities. Fig. 5 shows snapshots of
executed grasp poses, while Tab. V highlights the success
rates, demonstrating reasonable performance in challenging
real-world scenarios. Further discussion of failure cases can
be found in the Appendix.

2) Generating Reachable Grasps Near Workspace Bound-
aries: Additionally, we showcased the effectiveness of the
proposed method in generating reachable grasps near the arm’s
workspace boundary. We executed a generated grasp both with



and without guidance, as shown in Fig. 6. Without guidance,
the system tends to produce unreachable grasps behind the
object, resulting in failures even when the arm is fully extended.

3) Generating Proximal Grasp Configurations for Regrasp-
ing: Finally, we demonstrated the proposed method’s ability to
generate grasps with adjacent arm configurations in joint space
during regrasping. Using the initial grasp’s arm configuration
as a reference, we consecutively sampled grasps 10 times,
selecting the one with the lowest joint proximity loss from
40 candidates per sample for execution, as shown in Fig. 7.
Without guidance refinement, the baseline method leads to
unnecessary arm movements. In contrast, our approach reduces
the average joint space distance between grasps from 0.88 rad
to 0.56 rad, resulting in a smoother execution trajectory.

V. CONCLUSIONS

Conclusion: In this work, we present an arm-aware dexterous
grasp generation framework that integrates arm kinematics and
environmental constraints into diffusion-based sampling while
retaining the generalization ability of pretrained arm-agnostic
grasp models. By jointly optimizing wrist poses and arm config-
urations and injecting closed-form arm-related gradients during
denoising, the method guides sampling toward feasible regions.
Experiments in simulation and real-world settings featuring
constrained scenarios show improved constraint satisfaction
and arm configuration proximity, without requiring arm-specific
data synthesis and training, while maintaining reasonable
success rates across different arms and environments.

Discussion: We note that the incorporation of guidance
may slightly perturb the learned distribution and affect grasp
quality. To address this, null-space projection and evaluator-
based gradient guidance can be introduced during denoising to
maintain alignment with high-quality grasp regions. Moreover,
as the refinement induced by the guidance is inherently
local, the method is most effective at converting near-feasible
samples into feasible ones, motivating the use of multiple
initial samples for broader feasible coverage. Future work will
explore integrating our guidance with improved initial sampling
strategies to further enhance global performance.
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