APPENDIX A
ADDITIONAL RESULTS AND ANALYSIS

A. Ablation of the Nullspace Projection Method

We propose a nullspace projection method to address the
potential decline in grasp quality caused by the introduction
of guidance, which ultimately maintains grasp quality. The
main task is defined as keeping a point on the palm fixed in
the world coordinates. By projecting the guidance gradient
Vg to the main task’s nullspace, the hand keeps facing the
object in most cases, thus maintaining the grasp quality. The
ablation results in Tab. VI show the percentage change of
metrics when the nullspace projection is enabled (w/ proj.)
compared to *Ours’ in Tab. I. As shown by the results, the GSR
increases by over 10% without projection, indicating improved
grasp quality. However, there is minimal change in the SR,
indicating that the absolute number of successful grasps in a
batch remains consistent. This trend arises from the interplay
between the decrease in feasible grasps (FR) and the increase
in grasp quality (GSR). The decline in FR is expected, as the
direction of gradient descent is modified by the projection. The
OSR presents similar trends to SR.

B. Ablation of the Noised Gradient

When the noised wrist pose x; instead of &, is used to
compute Vg in (13), we assume that the resulting noised
gradient may result in poor convergence. The ablation results

with noised gradient (w/ noised grad.) are presented in Tab. VI.

The FR decreased by 11.75% and 0.85% in S1 and S2 as
expected, while it increased by 8.31% in S3. The obstacles
of S1 and S2 result in the robotic arm alternately collide
with two walls and produces inconsistent gradients which
hinder convergence. While for S3 with less obstacles, Vg(x;)
performs better by providing more direct and timely guidance.
Therefore, in specific applications, the choice between x;
and @( should be determined by the metrics relevant to the
particular scenario. In addition, the grasp quality marginally
decreases (GSR), and the change of SR and OSR depends on
the specific scene.

C. Influence of the Number of IK Solutions

Remember that solving (6) involves minimization over the
IK solution set Q, which is approximated with a finite set
in practice. As shown in Tab. VII, increasing the number
of IK solutions enhances all metrics, indicating that a better
solution to (6) has been found. Note that using fewer than 4 IK

Table VI: Performance of the ablation groups compared to *Ours’ in Tab. I

Changes of Metrics(%)71

Scene Method

FR GSR SR OSR

S1 w/ proj. -11.75  +13.11  +4.34  +0.68
w/ noised grad.  -11.75 -3.66 -9.04 235

2 w/ proj. -35.24  +1635 -386  -3.19
w/ noised grad. -0.85 -3.05 -2.40 -1.86

$3 w/ proj. -16.30  +11.42  +0.84 -1.22
w/ noised grad.  +8.31 -0.50 +4.04 +0.92

solutions can significantly degrade performance with the URS,
as these solutions reside in disconnected sub-manifolds of the
configuration space. Their varying order can result in unstable
gradients due to the discontinuity of the IK solutions. In
contrast, the performance with Franka is less affected, as it has a
connected IK solution set. In addition, more inverse kinematics
(IK) solutions reduce the number of grasps generated per
second. Thus, an appropriate number—S8 for URS and 10
for Franka—is chosen.

D. Failure Cases of Executing Generated Grasps in the Real
World

We present several failure cases in Fig. 8, highlighting
potential limitations of the proposed method and possible
directions for improvement. 1) In some cases, the guidance
compromises the quality of a small subset of generated grasps,
resulting in unstable configurations that only grasp the edge of
the object (Fig. 8 (a-b)). This accounts for 7 out of 20 failed
grasps. This issue often arises when the arm remains in collision
until the end of the denoising process, causing conflicts between
constraint satisfaction and convergence to the learned grasp
distribution. Although we utilize the grasp evaluator to filter
out high-quality grasps, we find that real-world point clouds are
often noisier and more incomplete, leading to misestimation
of grasp success probabilities. This issue can be mitigated
through increased data augmentation and fine-tuning with

Table VII: Performance of grasp generation with varying number of IK solutions

Metrics(%

Arm IK Num. el Grasps
FR GSR SR OSR  PerSecond?

2 2.74 44.01 1.21 10.06 1257.86
UR5 4 4536 56.64 2569 83.64 1153.40
8 73.16  57.80 4229 90.32 1021.45
5 3547  48.79 17.31  71.58 676.59
Franka 10 46.18 5178 23091 80.46 419.64
20 60.70  53.65 3257 8572 237.25
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Fig. 8: Failure cases in real-world experiments. (a—b) The quality of a small
subset of generated grasps is degraded by the guidance, leading to unstable
grasps holding only the object’s edge. (c) The dexterous hand unintentionally
contacts the object due to open-loop execution. (d) The object shifts in hand
because of inaccurate mass parameter estimation or insufficient friction.
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Fig. 9: Architecture of the grasp generation and evaluation networks.

real-world data. Another reason for failure is inaccuracies in
motion planning and open-loop execution, which can result in
unintended collisions, contributing to 9 out of 20 failed grasps
(Fig. 8 (c)). This issue can be mitigated through real-time
feedback and online sensing. Additionally, incorrect estimation
of the object’s mass parameters or insufficient friction accounts
for the remaining 4 out of 20 failed grasps (Fig. 8 (d)), though
this aspect lies beyond the scope of this work.

APPENDIX B
ADDITIONAL DETAILS OF THE PROPOSED METHOD

A. Network Architecture

Our network design is inspired by prior work [!]. For
grasp pose generation, the object’s partial point cloud is
embedded into a 1024-dimensional global feature vector using
a Minkowski Unet. This global feature, along with a randomly
sampled noise from a Gaussian distribution, is input into the
denoising process. The noise prediction network, conditioned
on the global feature and the time step ¢, predicts a denoised
sample from the noisy input. The grasp pose is then recovered
from the fully denoised sample and the global feature. A grasp
evaluator predicts the probability of successfully executing a
given grasp, based on the grasp pose and the global feature. The
evaluator is implemented as an MLP with hidden dimensions of
[512, 256], followed by a sigmoid activation function. The grasp
evaluation uses the same training data as the generation network,
augmented with execution success labels from performing all
grasps in the MuJoCo simulator. The evaluator is trained using
cross-entropy loss and successfully predicts 87% of grasps in
the test set with its best checkpoint.



